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PREFACE

The present volume is an attempt tc carry out the program out-
lined in the preface to Volume I. Unfortunately, Professor Young
was obliged by the pressure of other duties to cease his collatfors
tion at an early stage of the composition of this volume. Much of
the work on the first chapters had already been done whett'\this hap-
pened, but the form of exposition has been changed 50 much since
then that although Professor Young descrves eredit’ for Gonstructive
work, he cannot fairly be held responsible for I.Dlst\kes or oversights.

Professor Young lias kindly read the pmof sheets of this volume,
as have also Professors A. B. Coble and A }l “Bennett. Most of the
drawings were made by Dr. J. W, Alexﬁnr]er. T offer my thanks
to all of these gentlemen and also_ to M essrs. Ginn and Company,
who have shown their usual cour.te’g'y and efficiency while converting
the manuseript into a book. &3

The second volume has heeh arranged so that ove may pass on
a first reading from thelénd of Chapter VII, Volume T, to the
beginning of \olume II. The later chapters of Volume I may
well be read in cﬁnnecmon with the part of Volume IT from
Chapter V onwglrd,

I shall pass’l}\; the opportunity to discuss any of the pedagogical
guestions,ahith have been raised in connection with the first vol-
nme ani\whlch may casily be foreseen for the second. It is to be
expuut;d that there will continue to be a general agreement among
..thoée who have not made the experiment, that an abstract method

\of’ treatment of geometry is unsuited to beginning students.

In this bock, however, we are commitied to the ahstract point
of view, We have in mind two principles for the classification of
any theorem of geometry: (a) the axiomatic basis, or bases, from
which it can be derived, or, in other words, the class of spaces
in whlch it c@g, X hd and (b) the group to which it belongs




iv PREFACE

In the first volume we were always concerned with theorems ba
longing to the projective group, and these theorems were classified
according as they were consequences of the groups of Assumptions
AE;AEH; AEP;or AR P, II. Among the spaces satis-
fymg A, E, P (the properly projective spaces) may be mentioned the
modular gpaces, the rational nonmodular space, the real space, and

the complex space. Any one of these may be specified categorically
by adding the proper assnmptions to A, B, P. The passage from the
point of view of general projective geometry to that of the partieiihar
spaces is made in the first chapter of this volume. O\

Having fixed attention on any particular space, we hapd\a <ot of
groups of transformations to each of which belongs its.Feometry,
For example, in the complex projective plane we ﬁndfalﬁong othors,
(1} the group of all-continuous one-to-one reciprqcsi}l.'transformations
(analysis situs), (2) the group of birational tradsfurinations (algebraic
geometry), (3) the projective group, (4) thespréup of non-Fuclidean
geomeftry, (5) a sequence of groups connectdll ith Euclidean geometry
(cf. § 54). The groups (2), (3), (4), and™BY all have analogues in the
other spaces mentioned in the paradraphs above, and consequently
it is desirable to develop the theorsins of the corresponding geometries
in such a way that the assumptions required for their proofs are
put in evidence in each emse. This will be found iilustrated in
the chapters on affine andh Kuclidean geometry.

The two principle{'\df classification, (a) and (&), give rize to a
double sequence pf:geometl-ies, most of which are of eonsequence in
present-day mz;trhematics. It is the purpose of this book to give
an elementapyaccount of the foundations and interrelations of Lhe
more i arliaht of these geometries (with the notable exception of (2)},
May I{Fenture to suggest the desirability o

R ¥ of other books taking
account of this logieal structure, but dealin

of\geometric figures ?

The ideal of such books should be not raerely
theorem rigorously but to prove it in
which spaces it is true and to which
idea of the form which would be ass
sectlons written in this fashion can
Other subjects for which this type of
ab the present time are quadric surfac

g with particular types

to prove every
such a fashion as to show in
geometries it belongs. Some
umed by e treatise on conic

exposition would be feasible
es, cubic and quartic curves,

o f- .l
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rational curves, configurations, linear line geometry, collineation
groups, vecter aualysis,

Books of this type could take for granted the foundational and
coordinating work of sueh a hook as this one, and thus be free to
use all the different points of view right from the beginning, On the
other hand, a general work like this one could be much abbreviated
if there were corresponding treatises on particular geometric figures
(for exaraple, conic sections} to which cross references could be made,
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PROJECTIVE GEOMETRY

CHAPTER 1
FOUNDATIONS

1. Plan of the chapter. In the first volume of this book wel hta}/e
been concerned with general projective geometry, that is to say, with
those theorems which are consequences of Assumptions, AE D In
many cases we also made use of Assumption I, };l‘lJ\tf\’I:nGSt of the
theorems which we proved by the aid of this assutaption remain true
(though trivial) when this assumpticen is falsc, \Jhe class of spaces
to which the geometry of Vol. I applies is vé\r} arge, and the sel of
assuraptions used is therefore far from cgtegorical.

The main purpose of geometry 1s, of course, to serve as a theory
of that space in which we envisaggy Udurselves and external nature.
This purpose can be d,ccomphshed only partially by a geometry based
on a set of assumptions whiek is not categorical. We therefore pro-
ceed to add the assumptmq\ which are necessary in order to limit
attention to the geomaﬁ@xof reals, the geometry in which the number
system 1s the real number system of analysis.

These assumpfions are stated in two ways, the one (§ 3) dependent
on the theorsaf“the real number system and the other (§§ 7-13)
11ulependem§(} it. We also state the assumptions (§§ 5, 14, 15, 16)
necessary \for certain other geometries which are of importance
becausc of their relations to the real geometry and te other branches

“Mathematics. At the end of the chapter we give a summary of
the assumptions for the various projective geometries which we are
considering.

2. List of Assumptions A, E, P, and H,, For the sake of having
all the assumptions before us in the present chapter, we reprint AE,
P,and H,. The assumptions serve to determine a class S of elements

called pomts, and a class of subclasses of S called lines. The phrase
1



2 FOUNDATIONS [Crsp. I

«3 point is on & line” or «a line is on a point ” means that the point
belongs to the line (cf. p. 16, Vol. I).

ASRUMPTIONS OF ALIGNMENT:

Al If 4 and B are disttnct points, there 1s at least one line on
both 4 and B.

A2 If A and B are distinct poinis, there is not more than omne
line on both A and B.

A3 If 4, B, C are points
not wll on the same line,
and D and B (D+E) are
points suchk that B, C, D are
on a line and C, A, E are
on o line, there 5 o point
F sueh that 4, B, F are on
a line and also D, E, F are
on a line. 7%

) ,";.‘ Fia. 1
E 0. There are af least three poinid it every line.
E 1. There exists af least one e

E2. All points are not on thesdwme [ine.

E 3. All points are not ghthe swme plane
E3.IfS isa t?wge,\gii}f@ce,f every point is on S,

ASSUMPTIONS OF EXTENSION :

ASSUMPTION ©F PROJECTIVITY :

P If proiec’fé:ﬁi}y leaves each of three distinet potnts of o line
wvartant, it dedves every point of the line invariantt
.“\‘.

Assupgmioy H, :
H \o.j':’i“he dimgonal points of & complete quadrangle are noncollinear.§

“W§ was explained when Assumption P was first introduced, this
assumption does not appear in the complete list of assumptions for
the georr}etry of reals, but is replaced by certain other assummptions
from which it (as well as H)) can be derived as a theorem. The list

of assumptions for this geometry will consist of Assumptions A, E,
and the new assumptions.

*Cf 87, Vol 1. 1 Of. § 85, Vol. T
1O § 9, Val. 1. §CF. §18. Vol L.
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3. Assumption K. The most summary way of completing the list
of assumptions for the geometry of reals is to introduee the following :

K. A4 geomelrie number system (Chap. VI, Vol. 1) ds isomorphic®
with the real number system of analysis.

Thus a complete list of assumptions for the geometry of reals is
A EK

The use of Assumption K implies u previous knowledge of the real number
system.t Tts apparent simplicity thevefore masks certain real difficulties.
What thege difficulties are from a geometrie point of view will be found ond
reading §§ 7-18, where K is analyzed into independent statements I, C, R,

These sections, however, may be omitted, if desired, on a first reading. ¢ \J)
NS ¢

Since a geometric number system in one one-dimensiongh Hfm is
isomorphic with any geometric number system in any one-dfluiénsional
form in the same space, it is evident that the priuciplféxé;f duality is
valid for all theorems deducible from Assumptions\d, E K

Tn order that the results of Vol I be applicalile to the geometry
of reals, it must be shown that Assumptipn:\P is a logical conse-
quence of Assumptions A, E, K. Since myltiplication is commuta-
tive in the real number system, thi'gji‘ﬂs{llt would follow directly
from Theorem 7, Chap. VI, Vol I;..j:’l?lie proof there given is, how-
ever, incomplete. It is shown ('Ill’iséorem 6, loc. cit.) that if P holds,
multiplication 13 commutatiyé ™ but it is not theve proved that if
multiplication is commutative, I is satisfied. The needed proof may
he made as follows: o N\

TrnzoreEM L A‘s‘gw}nﬁt*ion T ds wvalid in any space safisfying
Assumptions A.@d T and such thet multiplication is commutative
o geome%ﬁ'\gwmbe? system (Chap, VI, Vol I).

Proof, ANy obvious that the pumber systems determined by any
two ch(ﬁéés of the fundamental points 1 H H. are isomorphic (cf.
THeovets 1 and 3, Chap. VI, Vol T), so that we may base our argument
on &n arbitrary choiee of these points. We are assuming that multi-
plication is comummtative, and are to prove that any projectivity LI

# This term is definod in § 52, Vol, 1.

 The real number system is to be thonght of gither as defined in terms which
rest ultimately on the positive integers {cf. Pierpont, Theory of Functions of Real
Variables, pp. 1-04; or Fine, College Algebra, pp. I-70) or by means of a set of
postulates (cf. T, V. Huntington, Transactions of the American Mathematical
Society, Vol. VI (1906), p. 17),
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which leaves three distinct points of a line fixed is the identity. By
definition, IT is the resultant of a sequence of perspectivities

(H] SR 22 . e i)

where [H] denotes the points of the given line. By Theorem 5,
Chap. ILL Vol. I, this chain of perspectivities may be replaced by
three perspectivities

(2 (71 2 (1 Ly, S

A

Moreover, by Theorem 4, Chap. IIL, Vol. I, the pencils [I’]\a‘na [9]
may be chosen so that their respective axes pass through, two of the
given fizxed points of II. Let us denote these points, hy Y, and H,

oL \ g

:t\w
:“\s.

&

Fiz. 2

™

,{g;é@étively and let H., be the third fixed point. By ancther applica-
Njion of Theorem 4 the pencils [P] and [Q] may be chosen so that
their common point R is on the line S, (fig. 2).

Now, since H,, is transformed into itself, S, #., and & must be
collinear. Since X, is fixed, 7, #,, and ¥ must be collinear. Since
H, s fixed, S, T, and H, are collinear. 1f 7 ig any point of the lipe
H{Hy, 1t is transformed by the perspectivity with § as center to a
point P of the h:ne H R; the perspectivity with T as center trans-

forms P to a point @ of the line RH,; the Derspectivity with I/ es
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center transforms @ back to a point H' of the line X H,. We have
to show that H' = H,

Let H, be the trace on the line I X, of P7'; let H| be the trace
of BT and H' is the trace of U@

The complete quadrangle Z'ESP determines Q (H H H , I _H H),
and hence {Theorem 3, Chap. VI, Vol. Tj in the scale H OHI_)T{N

o, H,=H

The complete quadrangle TR U defermines Q (H H H,, II II H/ B
and hence in the scale H H ii, )\

H, - H,=H O

Since multiplication is commutative, = H’, which prove;s.f-he‘theorem.

W
The reader will find no difficulty in nsing the constructi’()u\ abhove to prove
that the validity of the theorem of Pappus (§ 86, Vab\N'is necessary and
sufficient for the commutative law of multiplication agdfor Assumption P.
¢*C

4. Double points of projectivities. T)rrm'i'}iov A projective trans-
formation of a real line into itself is w.ud 4o be hyperbolic, paraholie,
ar elliptic* according as it has two, ene or no double points.

Tt was proved in § 58, Voi. I, j;hab ‘the determination of the double
points of a projective tranbformdtlon’r

in‘h’ = Xy + b,

1
@ pxl = ey + diy

depends on the sghlbmn of the equation
@ O patdpta=o,
where A:\zd—u be. This equation has two real roots if and only if
its d:*L\E*‘,I:immant (@ + df—
is\p(;sitive. Hence we have
If A< 0, the transformation (1) is hyperbolic. For an elliptic or
parabolic projectivity A s always positive.
#* These terms are derived from the corresponding types of conie seetions

(aee §87). Ina complex one-dimensional form a semewhat different terminology

is used (cf. § 88).
+ Tn this volume we shall generally write homogeneouns cobrdinates in the form

{5, ,), whereas in Vol. T we used (2, %.).
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In case the projectivity (1) 13 an involution, @ = — d(§ 54, Yol. T,
and hence — 4 A is the discriminant of (2). Hence

An wmwolution is elliptic or hyperbolic according as A 45 positive
o neguiive,

The intimate connection of these theorems with the theory of linear
order is evident on comparison wilh the first sections of Chap. TL
A deduetion of the corresponding theorems frow the intuitive coneep-
tins of order is to be found in Chap. IV of the Geometria Proyet-
tiva of Enriques, O\

EXERCISE O

A projectivity for which A >0 is a produet of two hyperb@fic Jovolutions.
A projectivity for which A <0 is a produet of three hyperbélie’involutions.

5. Complex geometry. Assumpiion K provides for the soluiion
of many problems of construction which &0\1 d not be solved in
a net of rationality. But even in the .peal™ gpace the fundamental
problem of finding the double points o.f:ain’involution bas no general
solution. N\

To sec this it is only necessal'y:ﬁfi set up an involution for which
A > 0. Take any involution of“which two pairs of conjugate poinis
A4" and BB' form a harfadnic set H{44', BB). It the scale
B, B, L s chosen so thig A =12, 4'= 12, B= P, then B — 2, and
the involution is repy&&ted by the bilinear equation (§54, Vol. Ij

2\ ' =—1,

The double R{ﬁhﬁs of this involution, if existent, would satisfy the
equatwr‘l‘,\\~

which &ad no real roots,
o) effect of Assumption K is thus to deny the possibility of
selying this problem. If, however, we negate Assumption K and
replace it by properly chosen other assumptions, we are led to a
geometry in which this problem is always soluble, namely, the
geometry of the space in which the geometric numhber S\'Sgel'ﬂ. is
isomorphie with the complex number system of analysis, ;llt;hough
this geometry does not have the same relation to the SI;ace of external

natuTe a8 the real geometry, it is extremely important because of its
relation to other branches of mathematics,

2
e z-—]_,
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. Oue wuy of founding this geometry is to replace Assumption K
by another assumption of an equally summary character, namely,
J. A geomeiric nwmber system 48 isomorphic with the comples nain-
ber system of analysis.

Since this number system obeys the commutative law of niulti-
plication, the corresponding geometry satisfies Assumption 1, and all
the theovems of Vol T apply. Thus, a set of postulates for the comw-
plex geometry is A, E, J.

The problem of finding the double points of a one- dmmmunal
projectivity is completely solvable in the complex geometipd (o
any such prejectivity may be represented by the bllmear eqliatlon
(§ 54, Vol I) cx# +do' — gz — b= 0,

..,\‘
and therefore its double points are given by the roaps ot

cf - {d — oy — b= [},0,1\\:

which exist in the complex number systern )

The analogous result holds good for an n-dimensional projectivity,
Tn this case the problem reduces tovﬁ.ﬁéﬁ of finding the roots of an
algelraie equation of the nth degre@™"

8. Imaginary elements adjoined to a real space. 1n this connevtion
it is desirable to think of angther point of view which we may adopt
toward the complex space, ‘buppoqe we are working in a real geomnotry
on the basis of A, EXK (or of A, E, H, G, R; sce below). It is a
theorem about t}]e‘;cal nwnber system* that it is contained in a
number system (t\'u,' complex number system) all of whose elements
are of the f({n} @i+ b where ¢ and & are real and ¢ salisfles the
eguation .’s

N F+1=10.
Hepee .it is a theorem about the real space that it is contained in
anothtr space which contains the double points of any given involution.

This may be seen in detail as follows: By the theory of homeo-
geneous coordinates the points of a real projective space S are in a
correspondence with the ordered tetrads of real numbers (2, 7, =, &),
except (0, 0, 0, 0), such that to each tetrad corresponds one pumt, and

to each point e set of tetrads, given by the expression (ma,, m.c,

# This same question is disenzsed from the point of view of & general space and
a general field in Chap. IX, Vol. I,
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ma, mi) where 2, x, x,, x, are fixed and m takes on all real num-
ber values except zero. By the property of the real number system
inentioned above, the set of all ordered teirads of real nnmbers is
contained in the set of all ordered tetrads {#» 2, 2, z) where
%y 2, %,, %, are complex numbers,

Let us define a comples point as the class of all ordered tetrads of
complex numbers of the form

(ks bry, ke, Rz Q

where for a given class 2y #1125, 23 are fixed and not all zero@nd %
takes on all complex values different from zero. TLet the set{Of these
classes satisfying two independent linear equations &N

(3) aﬂzﬂ+ alzl + G222+ aszs = 0’ - 3 gﬁ
bz + blzl +bz + ?)aza =
be called a compler line. With these convqn!;}'blfs it is eagy to see
that the set of all complex points and gomplex lines satisties the
assumptions A, E, P, and thus the compleX ‘points constituie a proper
projective space. Lot us call this spage\S,.
The space S, contains the set of &1 éomplex points of the form

(ke }r:.’,t’;l; ke, k)

where Z, ¥, @, T, are ale{al. Let us call this subset of complex
points S, If any set o\o'fmiﬂex points of S_ which satisfy two equa-
tions of the form (3)with real coefficients he called g « real line,” we
have, hy referencq {0, the homogeneous cotrdinate 8ystem in S, that
the complex pq{nts of S, are in such a one-te-vne correspondence
with the points“of S that to every line in S corresponds a “ real line”
in 35, angl%ﬁversely.

Thugy$, is a real projective space and is contained i the complex
pmjgiqt\rve space 5. Obviously S may also be regarded as contained
in/complex projective space S’ where S consists of the points of S
together with the points of S, which are not in S, and where each
line of $' consists of the complex points of § which satisfy two
equations of the form {8) together with the points of S whogse cotrdi-
nates sabisfy the same two equations,

DEFINTTION, Points of the real space S are called real points, and

points of the extended space §', complex points, Points in §' but not
in 8§ are called imaginary points.
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This discussion of imaginary elements does not require a detailed
knowledge or study of the complex number system as such. It is, in
fuct, a special case of the more general theory in Chap. IX, Vol. I
(cf. particularly §92), which applies to a general projective space.
It serves in a large variety of cases where it is sufficient to know
merely the existence of the complex space $' containing S and satis-
fying Assumptions A, I, P. It is a logically exact way of stating the
point of view of the geometers who used imaginary points before the
advent of the modern function theory. N

There are problems, however, which require a detailed study of the
complex space, and this implics, of course, a study of the céﬁt’p\lex
number system and such gecmetrical subjecls as the theurg b chains
(see §§ 11, 12, below, and later chapters). ‘ N

There is & very elegant and historically lmpertant method of intro-
ducing imaginavies in geometry without the\pge’ of cotrdinates,
namely, that due to von Staudt.* Tt depc dg» cssentially on the
properties of involutions which are dev elode Au Chap. VIIL, Vol L
and §§ 74-75 of this volume. The readenwill find it an excellent
exercise to generalize the Von Staudt theory 80 a8 to obtain the result
stated in Proposition XK, Chap. X ol L

7. Harmonic sequence. Weﬁlm'[l now take up a more searching
study of the assumptions of the geometry of reals. In Chap. TV, Vol T,
it was proved that ever_y{*sbuce satisfying Assumptions A, E contains
a net of rationality R“\&nii that this net is itself a three-space which
satisfies not only Assumptions A and E but also Assumption P
(Theorem 20), A W this rational subspace, therefore, apply all the
theorems in VO‘L 1 Whlch do not depend essentially on Assumption H
For exan e,\e\ rery line of R®is a lincar net of rationality and may
be reggn:ﬁe {(with the exception of one point chosen as «) as a com-
mutative number system all of whose numbers are expressible as

stiphial combinations of 0 and 1.

Throughout Vol. I we left the character of this net indeterminate.
It might contain only a finite number of points or it might contain
an infinite number. We propose now to introduce a new assumption
which will fix definitely the structure of a net of rationality.

#*Of. K. (3. C. von Staudt, Beitrige zur Geometrie der Lage, Niirnberg (1856 and
1857). J. Liiroth, Mathematische Annalen, Yol . VIII (1874), p. 146, Segre, Memorie
della R. Accademia delle scienze di Torine (2), Vol. XXX VIII (1886).
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DerixitioN. Let H, H,, H, be any three distinet points of a line % ;
let S and 7 be two distinet points collinear with H,, but not on A;
and let K, be a point of intersection of SH, and T'H,. Denote the

H. 1, H, H, H, T T
Fiz. 3 .“’}\
points of the line & by [H] and those of the 1i% W H, by [K], and
let II be a projectivity defined by perspect-ix{tiﬁ% as follows:

8 T NV
(H] 5 K] & (1))

The set of points SO\
HO’ Hp H-g’ v":' }I;'s IIH. 1

such that II(Z7) = H, |, together with the set

H N H, -, H, H,

— 1 -
o/

such that IL{ZI_; )=, is called a hormonic sequence. The point

H, is not in the séqlience but is called its limqt potnt,
The projectis-'i@“ IT is evi-
dently parga,l{’(ihc and carries

H, to Hy\

THEOREM 2. The middle one
ofduy three conseeulive™® poinis

@ harmonic sequence 4s the
harmondc confugate of the limit
point of the sequence with re-
gard o the other two.

Proof. By construction we have
Q (H R, HoH G H, )

# This term refers to the subscripts in the notation Hy.
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CororLary. AU points of o harmonic sequence belong to fhe same
net of rationality.

THEOREM 3. Two harmonic sequences determined by i1, 1, 11, and
by M, M, M. are projective in any profectivity 11 by which

HH H, 5 MM M.

Proof. By Theovem 3, Chap. IV, Vol 1, the projectivity IT transforms
harmonic sets of points into harmonic sets.

8. Assumption H, By reference to fig. 3 it is intuitively evident
to most ohservers that in any picture which can be drawn representing \
points by dots, and lines by marks drawn with the aid of a straight-
edge, no point A, which can be accurately marked will ever ¢irtcide
with H (% ). On the other hand, there is nothing in Aﬁﬁrﬁptimm
A and E to prove that H; + H), because (Introductionp§ 2, Vol. T)
these agsumyptions are all satisfied by the miniature.sp\aces diseussed
in § 72, Chap. V11, Vol I, and if the number of peints on a line is
finite, the sequence must surely repeat itself./IThus we are led to
make a further assumption. \ .

Assumerrony H* If any harmonde 8§é'uénce exists, not every one
contains only o fintte number of jog{ﬂtfi

The existence of a harlnouic‘\sia.fluence determined by auy three
points follows directly from“ﬂss;ilmptions A and E. That any two
sequences are projective folows from Theorem 3. Hence Assumption
H gives at once \\ -

THEOREM 4. Anyﬂt@ree disiinot colltnear poinis H , H, H. detur-
mine a harmonicdefence containing an infinite number of points and
having I a@cj\«?@‘{as conseeutive points and H, as the tmil poind.

THEOREMNOW The principle of duality is valid for all theorems
deductblg\from Assumptions A, T, H.

Bz‘@éf’This principle has been proved in Chap. T, Vol. I, for all
tthr\ems deducible from A and E. If 4, 9, 3, are auy tliree planes
on a line /, let 2 line I’ meet them in &, £, H. respectively. The
prajection by I of the harmonic sequence determined on I by H,, H,,
H,, is the space dual of & harmonic sequence of points. Since the

* Cf, Gino Fano, Giornale di Matematiche, Vol, XXX (1882), p. 108, Obviously
Assumption H, {Vol. I, p. 45) i3 & consequence of H. Hence, after introducing
Assumption H, we have that a net of rationality satisfles not only 4, B, P but also
H,. and thus every theorem in Vol I can be applied to a net of rationality.
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sequence of points is infinite, so is the sequence of planes. Henco the
space dual of Assumption H is true. The principle of duality in &
plane or a bundle follows as in § 11, Chap. I, Vol L

By reference to the definition of addition in Chap. VI, Veol. I, it is
evident on the basis of Assumptions A and E alone that the trans-
formation 2'= -+ & is a parabolic projectivity. Denoting it by «, it
is clear that if there is any integer # such that o” is the identity,
then a**™ = g™ k and wm being any integers. Hence, if @ has a finite
period, there is only a finite number of points in a harmonic sequeuce\,
contrary to Assumption H. Hence O\

Tarones 6. A parabolic projectivity never has o Juate péo:'?od. in
other words, if of three points determining a harmonist Rewuence the
timit point is taken as w n a scale and two consecutitr points as O

. 2\
and 1, then the sequence consists of 3

0 N\
1 -1 L™
14+1=29 —1AY=_2

S+1=4 S8 _1=—14

™\
SN g

that s, of zero and all posifeve and negaiive tnlegers,
COROLLARY 1. The wet'of rutionality determined by O, 1, oo consists

of zero and all numbers of the form 7 where m and » are positive or
negative integersy, <) ”

Lrogf. B_‘}:\~T}iém'em 14, Chap. V1, Vol. 1, the net of raticnality
de.t-ermine&\’by 0, 1, o consists of all numbers ohtaingble from 0
and 1 1):{: the operations of addition, multiplication, subtraction, and
di}:igi@:‘ {excluding division by ZEr'0)

N\ JoROLLARY 2. The homogeneous codrdinates of any point in a lnear
planar or spatial net of rationality may be taken as integers.

. Proof. Tt Py T @, , are the homogeneous codrdinates of a point
in the nef, thoy are defined, gecording to Chap. VIT, V.

s . ol I, in terms
of the coérdinates in eertain linear nets.

Hence they may be taken
where m, and #, are integers. If m is the product

; m;

in the form 0 or 4
nl

of their denominators, mz, ma

1 0, M, aTe integers,
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The first of these corollaries enables us to obtain the following
simple result with regard to the construction of any point in a net of
rationality. Let Zf, be the harmonic conjugate of &, with regard to

if and H_|. The sequence

e, Iy, H_y, H o, Hy, Hy, Hy, I, -
is projective (fig. by with
H ., H_, H_, H, H, H, H, .

~1

R .
and therefore must be Q@tnionic. The points H,
a harmonic sequence )\

Gy H oy, H s, Hy, Hy, Hy, Hy, -

H,, M., determine

By Cor. 1 aify*point of the net of rationality is contained in a
sequence ¢hthe last variety for some value of =.

9. ()\:;d‘er in a net of rationality., DurixiTion. If 4 and B are points
of RQH;}HIIL) different from H., A is said to precede B with respect
tn\she seale H, I, Il if and only if the nonhomogeneous codrdi-
nate (cf. § 53, Vol I} of 4 is less than the nonhomogeneouns codrdinate
of B. If A precedes B, B is said to follow A.

From the corresponding properties of the rational numbers there
follow at once the fundamental propositions: With respect to the
scale H, H, H., (1) if A precedes B, B does not precede 4; (2) if 4
precedes B and B precedes €, then A4 precedes C'; (3) if 4 and B are
distinet points of R (¥ H H,), then either 4 precedes B or B precedes 4.
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The use of the properties of numbers in the argument above and in
analogous cases does not imply that onr treatment of gecmetry is dependent
on analytical foundations. Every theorem which we employ here is a logieal
consequence of the assumptions A, L, H alone.

The argument which is involved in the present case may be stated as
follows: The codrdinates relative to a seale K, H,, H, of the poinis

oo, H_,, H_,, H, H, H,, -

’ —gr
of a harmonic sequence, when combined according to the rules for addition
and multiplication given in Chap. VI, Vol. I, satisfy the conditions wliich. ud@\
kuown to characterize the system of positive and negative integers (including
zero). From these conditions (the axioms of the system of positive u}l’:fsu?:};a—
tive integers) follow theorems which state the order relations :L{nr@ﬁ;' these
integers, and also theorems which state the order relations amongathé rutional
mumbers, the latter being defined in terms of the integers. B }Lt”liy Theoren 6,
Cor. 1, the rational numbers are the codrdinates of pointdNIT R(J7, I H ).
Hence the points of R (I I, H, ) satisfy the conditions gi{‘eﬁ above.

It would of course be entirely feasible to make thesdiscussion of order in a
net of rationality without the use of codrdinates. .\ '

*10. Cuts in a net of rationality. DERINTTION. Two subsels, [4]
and [Z7, of & net of rationality R(f{gof{lﬁm) constitute a cut (4, 73)
wnth respect to the scale H, II, ¥ES if and only if they satisfy the
following conditions : (1) Every.jioint of the net except H,, is in |.4]
or [B]; (2) with respect to the'scale 77 o Hpp H, every point of [4] pre-
cedes every point of [B].';’.{'E,\t-here is a point Oin [A4] or in [B] such
that every point of [ 4]*distinet from O precedes it and every point of
[B] distinet from O follows it, the eut is said to bo closed and to have
0 as its cut-poindy Cotherwise the cut is said to be open. The class
[4] is said to Bg\the lower side and [B] to be the upper side of the cui

With respect to the scale &, 4, I, any point (O H.) of a net
R(H A ‘}?}‘w)\detcrmines tswo sets of points [ 4] and [ B] such that Cvery
4 preegdes or is identical with 0 and O precedes every . These sets
of paifits are therefore a closed cut having O as cut-point. Not every
cut, however, iz eloged, for consider the seb [4], including all points
whose cobrdinates in a system of nonhomogeneous coirdinates hav-
ing H. as the point « are negative or, if positive, such that their
squeres are less than 2; and the set [ 8], including all points whose

* An asterisk at the left of g
cmitted on a first reading. W

Wwhich are not essential to an
in Chaps, IIT and IV.

section num'bt_ar indicates that the section m ay be
& have marked in thig manner most of the sectiong
understanding of the discussion of metric geometry
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cobrdinates are positive and have their squares greater than 2. Since
no rational number can satisfy the equation

@2,
this equation is not satisfied by the codrdinates of any point in the
net. The sels [ 4] and {B] constitute an open cut.

Derintrion. With respect to the scale H, H, H., an open cut
precedes all the points of jts upper side and s preceded by all points
of its lower side. A elosed eut precedes all the points which its cut-
point precedes and 4s preceded by all points by which its cut-poirt, a8
preceded. A eut (4, B) precedes a cut (€, D) if and only if there\l {s a
point B preceding a poiut C. O

TuaroreM 7. (1) If @ cut (A, B) precedes a cut (C, D),, t,{e.m ', D)
does not pfecacle {4, B).

{2) If a eut (4, B) s not the same as the cud (6’, D) then erther
(4, BY precedes (€, D) or {C, Dy precedes (4, B}, {'r‘ both cuts are closed

and heave the same cul-point. D
(3) L/ w eut (4, B) precedes a out (O, B E’mi (O, D)} precedes a cut
(E, F), then (A, By precedes (E, F). QO

Froof. These propositions are dmecﬂ ‘tonsequences of the definition
above and of the correspending ]:JI'.OPEItleS of the relation of precedence
between puints. '

Dermnrmion. With respes@ to the scale H, /1, #., a cut {4, d) 16
gaid to he befween tw Qﬁts (B, By and (Ov C,) in case (B, B} pre-
cedes (4, 4,) and (4y, 4,) precedes (€, C)) or in case (€, C)) precedes
(A, 4) and {Ay, QY preuedes (B, B). Il any one of tlle~e cuts is
clo%ed it may. .Qa replaced by its corresponding cut-point in this defi-
nigion. ( u\.l for example, any open cut is between any point of its
upper sides and any point of its lower side.)

;¥n{é1"pén cut (4, B is sald to be algebraie if there exists an equation,

\ W nux“+a13:’*—1+->-+u,,=0,

with integral cocficients, and two points A, B, such that the codrdinates of
all points of [A] between A4, and B, make the left-hand moember of this
equation preater than zera and all points of [B] between A and B make it
Joss than zero® If it is assnmed that this equation has a rovt between A, and
B,, this is equivalent to assuming that there exists a point corresponding to
the cut (-1, B} on the line A5, but not in the given net.

# It is perhaps needless to remark that not every algebraie equation witll futegral
coeffcionts ran he asseriated in this way with a cut, For example, 2 + 1= 0.
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For the purposes of geometric constructions it would be sufficient to assume
the existence of cut-points for all algebraic open cuts (sec Chap. IX, Vol. T).
For many purposes, indeed, it would be desirable to make the assumption
referred to on p- 97, Chap. IV, Vol. I, and which we here put down for refer-
ence ag Assumption Q.

AssumprioN Q. There is not more than one net of rationality on a line

But it is customary in analysis to assume the existence of an irrational
number eorresponding to every open cut in the system of rationals, and it is
convenient in geometry to have a oue-to-one correspondence between the points
of a line and the system of real numbers. Hence we make the assumptibn
which follows in the next section. A\

It must not be snpposed that in the assumption which Iollqﬁé‘m\-e are
introducing new points in any respect different from those alrcaglj?\p}msirlered‘
What we are doing is to postulate that a space is a class ofgoints having
certain additional properties, The assumption limits the type of gpace which
we consider; it does not extend the class of poinis. Tosthis respect our pro-
cedure is not parallel to the genetic method of develofying the theory of
irrational nuninbers. )
EXERCISE .\3}

The points of R (H K\ H ), together withhthe' open cuts with respect to the
scale Hy, H,, H_, constitute a set [X]of t}:}ihgé having the following property:
1 [ 8] and [T] are any two subclasses pfi[‘X ] including all X’s and such that
every S precedos every T, then thergJg'either an S or a T which precedes all
other 1”s and is preceded by all other 5.

*11. Assumption of co tinuity. We shall denote the cut-point of a

closed et (M, Ny by 22 :3‘ In the following assumption it is not stated
whether the euts (4, 4, (B, B),and (D, D) are open or closed. If
one of them is cloged, therefore, the corresponding one of the symbols

Boap a0 By, 5 anﬂ £p,, nymust be understood in the sense just defined.

AssUMPRION C. IF every net of rationality contains an nfinily of

points, el on one line I in one met R(HIT ) there is associated
with eiery open cut (A, By, wilh vespect to the seale H, 0,1, e point
N\

A4 o which is on I and such that the Jollowing conditions are safisfied

N If two open euts (4, B) and (C, D) are distinet, the points
o mond By o are distinet; :

(2) If (4, 4) and (By B)) are any two cuts and (Cp C)) any open

cut between two poinits A and B of RUAH H), and if T is a projec-

tivity such thai

T (H‘”AB) =H°}?Al- -4:)??3'1- Byp
then TRy, o) s @ point associated with some cut (D D) between
(4,, 4,) and (B, B). c
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DermrTioN. The set of all points of R{H H H.), together with all
points associated with cuts in R(H # #.), with respect to the scale
If, H, Ii,,is called the chain C(H H H.). The points of R(JI 11 II.)
are called rafional, and any other point of the chain is called érrational
with respect to R{H H H.). A point associated with a cut which fol-
Jows 11, is called positive, and one associated with a cut which precedes
H_ is called negative.

Turokey 8. The point B, 4, associated, by Assumption C, with an
open out (4, By of R{H H H,), s not o potat of R(H H H)

Proof. The associated point could not be H,, because there st
projectivities of R{H A H,) which leave H, murmnt and cha\nge
the given cub into djﬂ“erent cuts, and therefore, by Assumpt«wn G,
change the associated point, Now suppose a point D, istmet from
A, but in R(H H H,), to be associated with some Jpch’ eut. Since
the given cut is open, there must be a point 4 hetyveen D and the
cut. If B is a point on the opposite side of the Adb Trom D, A and B
both precede or both follow 2 with respec, to)the scele H, 17, H,.
The transformation which changes every point of [ into its hamwmc
conjugabe with regard to &, and D has, ‘when regarded as a frans-
formation of the points of R(H H #,) with respect to the scale
H, H, I, the equation

x’g 2d —

where d is the cobrdinate 6407 It therefore transforms rational points
which follow D into ratienal peints which precede it, and vice versa.
Hence A4 and B are {fransformed into two points, 4" and B', which
precede D it 4 apd*B follow D, or which follow D if 4 and B pre-
cede D, By Afsimption C (2), the point D which is associated with
an open cu{:‘&tween 4 and B is transformed into a point D' associated
with a ett between ' and B. By Assumption C (1), D' iz distinet
frond 3 “contrary to the hypothesis that D is a fixed point of the
Lrar?éormatlon

THECREM 0. The poinis of C(H H H.), excluding H., form, with
reference to the scale in which H =0, H;=1, H,= », a number sys-
tem isomorphic with the real number system of analysis.

Proof. The definitions of Chap. VI, Vol. I, give a meaning to the
operations of addition and multiplication for all points of the line /.
Tn that place we derived all the fundamental laws of operation, except
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the commutative law of multiplication, on the basis of Assumplions
Aand E. We have also seen in the present chapter (Theorem 6, Clor. 1)
that the codrdinates of points in R(I/ # H, ) are the ordinary rational
numbers. Hence it remains to show that the geometric laws of com-
bination as applied to the irrational points of C( H II Ay are the same
as for the ordinary irrational numbers.

The analytic definition of addition of irrational numbers* may
be stated as follows: If & and & are two numbers defined Ly vuds
(#y ¥y and (#, p), then &+ b is the number defined by the eht
(x] +, ¥+ -yﬁ). . \ \\

To show that our geometric number system satisfios this‘edndition
in C(H# H H,), suppose first that « is a rational poing "@‘G.(_[IoﬂlHn)
and & an irrational point. The projective transforma?{iaﬁ

4) f=z+a

%

changes the set of points {=,] into the set [%;;]}\(E], which is the same
as [#,+ ,]. Similarly, it changes [y, ] in?q{%»{— % 1. Henee, it changes
the cut (z,, »,) into (2, + 2, 4,4+ ), %}pd~lﬁence, by Assumption ('(2),
changes & into a point determined by’ eut which lies between every
pair #,+, and y, + ¥,. Therefote & is changed into ihe point asso-
ciated with the cut {(z,+z, ¥ 1l-~3}2), But the transform of b is ¢ b.
Hence the geometric sum{d+b is the number defined by the cut
(2, + Ty Y+ 4,). \.\i ) |

Next, suppose boih“e and & irrational. The transformation (4)
changes [#,] intoshe set of irrational points [2,4a), b into b+ a,
and [z,] into ?.2:—1> @]. By the paragraph above, the eut which detines
any z,+ a precedes the cut which defines any ¥,+a. Hence, by
Assumgfiiin'ﬂ (2), the cut which defines any point x 4« precedes
the cubyhich defines & + ¢, and this precedes the eut which defines
% @ Any point #y+ %, of the lower side of the cut (2t v+,
‘pregedes the cub defining one of the peints
above, and hence precedes the eut defining % 4-
of the upper side of this cut follows the cut

+a, by the paragraph
. Similarly, any point
deﬁning b+ o Hence

* Cf, Fine, College Algebra, p. 50 i O Veblen and Lennes,

Chap. I. Infinitesimal Analysis,
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The analytic definition of multiplication of irrational numbers may
be stated as follows: If @ and & are positive numbers defined by the
outs {z, ¥,) and (z,, #,), let [#]] be the set of positive values of =,
Then ab is the number defined by the cut (a{,, #¥%.)- 1f 2 is nega-
tive and b positive, ab=—(— a)b If @ is positive and b negative,
ab=—{(a(—b)). If both « and b are negative, ab=(—a)(—b). If
=0 or =10, ab= 0.

Congider the transformation

# = an

If « is positive and rational while b is positive and irrational \'thxs
transforws [} into [ex,], which is the same as [z, It a]so ‘Ywhns-
forms & into ab and [y,] into [ay,], which is the samesas [,
Hence, by Assamption O(2), ab is the number assgmated with
(3’1%: #1¥)-

If both ¢ and & are irrational and p051t1ve, N again have [=,],
b, and [y,] transformed into [az )], ab, and [a@] where, as in the
anslogous case of addition, the cut defiging’ «z, precedes the out
defining «b, which in turn precedes the cut deﬁmng ay, Moreover,
any xjr, precedes some @, and any. y ¥, follows some ay, Hence,
by the same arguuent as in the‘cs,se of addition, (z]x,, ¥,¥.) 13 the
cut with which ab is associated, )

The transformation \(i\s (— 1)z

changes the cut (x, zj defining the irrational number & into the open
eut (— x,, — &) wlmh “therefore defines an irrational o', But since
z,— &, may be aﬁ5 nefmtne rational and z,— @, may be any positive
ratlonal the\s{tm of @ and &', which bas been proved to be determined
by the th‘(c #,, @, — ), must he zero. Henee we have that (—1)z
is the Jn*ttloual —a such that — o+ a=10.

Q’n{} transformation o = w(—1)
is the same as #'=(— 1)z for all rational points. Hence, by Assumption
C (2), these transformations are the same for all points of C(H H I ).
Tlence, for points of C(H I H,), (—Dz=s(-1).

By the associative Jaw of multiplication (which, it is to be remein-
bered, depends only on Assumptions A and E) we have, if « i3 negs-
tive and & positive, ab = — (= a)b



20 FOUNDATIONS [Caae. ]

where (—~ a}b is determined by the analytic (cut) rule. If a is positive
and ‘b is negative, it follows similarly, with the aid of the relation
(—Da=a{—1), that
ab=a{—1)(~b)=—(a(~8);
and if both @ and & are negative,
ab=(—=1)(=a) (=) (— b= (—a)(-b).

CoROLLARY. With respect to o scale in which H, = o, H=0,H=1,
we have ab = ba whenever & and b are in C(H i H,). N

TazoreM 10. dny projectivity which transforms H. o 4, atd H,
wnto potnts of the chain C(H H H,) transforms any point of ﬁw chain
tnto o point of the chain. o \

Proof. We have seen that «'=ax and z'= z+ a, if“or rational or
irrational values of @, are projectivities which cha“ﬁg\e I, into itself
and all other points of C(HOHI.H.,,) nto points™of the chain. The
transformation «'= 1 /2 is a projectivity which iﬁérch&ngea H, and 11
(see § 54, Chap. VI, Vol. I), and by Them:ax’;i:\!) it changes every point
of C(I H II), except H, and H, intg a.point of C(H H ).

As in the proof of Theorem 11,s8hap. VI, Vol. 1, it follows that
H, H, I, can be transformed mt:o any three points of the chain by
a product of transformations ‘of these three types. Moreover, any
projectivity is fully detegx{ined as a transformation of C( H I H)
by the three puints 3 o8B B, into which it transforms H, i, H,.
For, suppose there “ﬁ@% wo such projectivities, Il and I, the prod-
uct II-11" would 4redisform B, H, H, into themselves, Hence, by
Theorem 186, Cha}ﬁ. IV, Vol. T, it would leave invariant every point
of R{A H, Iix),’\ Hence, by Assumption C (2}, it would leave invarians
every po\iﬂbof C(H,H H.,). Hence II-TI would be the identity for
all pojgit,;s of the chain, and IT would be the same as I for all points
qf\t]}\é ‘chain, Hence every projectivity changing ir, #, H, into
Points of the chain is expressible as a product of Projectivities of the

forms o' = ag, o'= 3 4 @, 2'=1/%. As all these transform the chain
into itself, the theorem follows.

CoroLLARY 1. Any projectivity leaving invariant tree points af
the chain C(H, A leaves every point of the chain invariant.

Proof. Let I be the given projectivity le
B, B, B_,invariant. Tet P be the pro
=(H,HH. Then PIIP-' legves H,

Y

aving the given points, say
jectivity such that P(Bab’lﬂx)
» H, H, invariant and hence
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leaves &ll points of the chain invariant, as shown in the proof of the
theorem. Hence IT leaves all points of the chain invariant.
CoOROLLARY 2. Any profectivity of the chain C(H H H,) into itself

is of the form gl = az,+ by,

Px{ = ¢z, + dx,,

a b
cd*o’

where the cogffivients are real numbers.

*#12. Chains in general. DEFINITION. If (4, B) is an open cut ine N
any net of rationality R{K K K.) with respect to the scale K, K, LN
let I be a projectivity transforming R{X K K. ) inte R{H H H _)aud
K, into H,. This projectivity transforms (4, B) into a cut (¢} D) in
R(HDHIHE) with respect to the scale H, H, H,. If X ’is‘.ﬁhé"paint
associated by Assumption C with (€, D), the point IISNX)=X" is
called the irrational cui-point assoviated with (4, BINNY

The point X' is independent of the particular projestivity II. For let
I’ be any projectivity changing (4, B)into a cgti\li’; Fyin R(H H H.)
with respect to the scele HD, H, #,,and let(¥, ¥e the point associated
with (B, F) and ¥'=TI'"*(¥). Then IRATI'~* changes (&, F) into
{C, D) and hence, by Assumption C(2)¥must change ¥ info X. This
can take place only if ¥'=X', thaf s, only if the cut-point X' asso-
ciated with (4, B) is unique. {

By projecting any net of zf"a?ionality into R{(H H H_) it is shown
that the cut-points associated with it satisfy the conditions stated for
the points associated wigh the cuts of R(H H H,) in Assumption C.
Hence the theoremg of-the last section also apply to any chain what-
aver, a chain bt;igfg}d’eﬁned as follows:

DEF’INITIONXThe totelity of points of a net of rationality R{4BC(),
together mﬁl all the irrational cut~points defined by open cuts with
respect €0 the scale 4, B, ¢ in R(4BC), is called the chain defined
by A8, ¢ and is denoted by C(4BC). The irrational cut-points are
said to be irrational with respect fo R(4ABC).

Thus we have

TurorEM 11. (1) The projective trangform of a chain is a chain.

(2) Every open cul in any net of rationality defines a unigue
irrational cut-point collinear with, but not in, the net.

(8) If two such cuts with respect to the same scale and in the same
net are distinet, their cut-points wre distinct.



29 FOUNDATIONS [CHAR. T

(4) If two open cuts are homologous in a projectivity, thetr cut-points
are homologous tn the same projectivily.

(5) Any projectivity which transforms three points 4, B, C' wnto
three points of the chain C(ABC) transforms any point of the chuin
wio a puint of the chain,

THEOREM 12. There is one and only one chuin containing three dis-
tinct points of @ line

Proof. Let 4, B, C he the given peints. They belong to the (:haih
C(4B0) into which C(# H H,} is trapsformed by a ])roj{:cb\rit}'
such that A H H,+ ABC. By Theorem 11 (5) any projegt-i;;"ity such
that ABC—+ BAC transforms all points of C(4BC) "i\n’EQ points of
C{4BC). But by definition such a projectivity tramsforms C{ABC)
into C(BAC); hence C(B4C) is contained in CLIBLY). In like man-
ner C(4BCY is contained in C{BA4C), Hence\C (4BC)= C{BAC)=
C(BCA), cte. D

Now suppose 4, B, €' to be points of sog'.ﬂé:\other chain C{(PPQR). By
Theorem 11(3) a projectivity such ’that,* PQRA 5 QP 4R changes
all points of C(PQE) into points of C(LQR). But by definition it
changes C(PQR) into C(QPAN Hence C{QP.) is contained in
C(P@R). Bui the same prgjéétﬁ‘ity changes C(QP4) into C{(PQR).
Hence C(PQR)= C(QPA) In like manncr C{QP4) = C(PBA) =
C{CB4) = C{4BC). .\'\‘3

COROLLARY. A,cfbﬁg&'n contains the irrational cut-poini of every open
cut in any nelOf rationalily in the chain,
THEORE}\;;\~1§." Tre FunpaMENtal, THEOREM OF PROJECTIVITY FOR
4 CHAIKNYY 4, B, C, D are distinct points of & chain and 4, B, 7
any U{i‘fee distinel points of a line, then for any projectivities giving
,({je:?B{ G D)y x4, B, ¢, Dy wnd (4, B, ¢, D) {4, B0, D)) we
\have ' = Dy

Proof. Lev II, T1, be the two projectivitios mentioned in the theorem.
TI7*TE then leaves every point of C(4BC)Y fized; for it leaves every
point of R(4BC) fixed, and hevce, by Theorem 11 (1), must leave
every irrational cut-point of an open cut in R{ABC) fixed. Bub
I ds then the identical translormation as far as the points of
C(4BC) are concerned. Tlence 7V = IV,

* Cf. Theorem 2, Chap. T11, Vol. I.
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This theorem may alse be stated as follows:
Any projective correspondence between the points of two chuing 1s
uniquely deterinined by three pairs of homoloyous points.

Qur list of assumptions for the geometry of reals may now be com-
pleted by the following assumption of closuve.

Agsuvrrioy R On af least one line, if there ds one fhere ds not
more than one chedin

Tt follows ab once, by Theorem 12, that every line is a chain, It also
tollows, by an argument sirictly analogous to the prool of Theorem A%
that the dual propositions of Assumptions Cand R are true, I‘IGEFN!-G )
we have ¢ .,’;.‘

TrecrEM 14, The principle of duality is valid fm‘ fu'l” Weorems
deducible from Asswmptions A, I, H, G, It \

*13. Consistency, categoricalness, and independenceof the assump-
tions. Let us now apply the logical canons c:}gb@iued in the Intro-
duction (Vol. I) to the foregoing set of assumpbions.

TurorEM 15, Adssumptions A, F, H, (‘ 1;; wre consistent if the real
numler sysiein of analysis 18 existent.

Proof. Consider the class of alls m‘demd tetrads of real munhbers
(2,5 £,y 72, @), With the exceptlm of (0, 0,0,0). Any class of these
ordered tetrads such that iEQne of its wemburs is (o, @, @, @) all
its other members are given by the formula (me, ma,, mea, may,
where m ig any real mumber not zero, shall le called a pmnt Any
class consisting of all points whose mmponeut ietrads satisfy two
independent lingulhomogeneous equations

: +?-”+ fr 2 ..-,’,’-.__
,'\’\ ﬁngﬁ'o .flJ) e —!'-i (IR 0,
S

‘ -f— woaE + i + 1y =

v ;BU J]l' B EX 0

shall\pe’ called a line. The class of all points and lines so defined
satisfy the assumptions A, E, H, G, R (ck §4, Vol. I).
TarorEM 18, Assumptions A, B, H, €, R jform a calegorical set.

Progf. In Chap. VIL, Vol. I, it has been proved that tlie points of a
space satisfying Assumptions A, E, P can be denoled by horogencous
cobrdinates which are numbers of the geometric number system of
Chap. VI, Vol. I Since P is a logical consequence of A, E, H, G, R
(cf. Theorem 13), this result applies bere, and by Theorem 9 the
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number system in question is isomorphic with the real number
system of analysis,

Now if two spaces S1 and S2 satisfy A, E, H, C, I, consider & homo-
geneous codrdinate system in each space and let each point of 5
correspond to that point of 5, which hag the same cotrdinates. This
correspondence is evidently such that if three points of S, are eollinear,
their correspondents in S, are collinear.

It is worthy of remark that the above correspondence may, heset
up in as many ways as there are collineations of S into itself.

TeEoREM 17. Assumptions AT, A2, A3, K0, K1, E2,‘}\*‘?, 1 3,
H, C, R are an independent set. O

st
< 3

Proof. The method of proving that a given assimiption is not a
logical consequence of the other assumptions w@\explailled in the
Introduction, p. 6, Vol. I Buppose there is_given a class of objects
[#] and & class of subclasses of [«]. If wéheall each « a point and
each element of the class of subclasse}é. line, then each of our
assumptions, when thus interpreted, will be either true or false* with
Tespect to this interpretation. If.:a:]jl:t-he assumptions but oue are true
and the one is false, it cannqt«,’f;é *a logical consequence of the others;
for a logical consequence ofifiue statements must be true. In the
sequel we shall eall thelobjects, @, pseudo-points, and the subclasses
of [z] which play the'dle of lines, pscudo-lines.

Al The pseugio\)oints shall be the points of a real projective
plane 7 together'™with one cther point (. The pscudo-lines shall be
the lines of cr:.'\A 1 is false because there is no psendo-line contain-
ing 0. A2(is true because it is satisfied by the ordinary projective
plar}eg&ﬁ is true because the only sets of points 4, B, ¢, D, I which
?}zj{iéf,y its hypothesis are in #. The only pse'udn-plane 18 o, and there

...\fi.g\no pseudo-space. Hence it is evident that E 0, 1D 1,E2 K3 are true
\and E 3 is vacuously true. Assumptions ¥, O, R are evidently true.

tm: It ];élﬁ h}:pothesxs of & statement is not verified, we regard the statement as

Matl‘lemati?-:lmsg t'h?; terminology of E. H. Moore (Transactions of the American

Seath i oclety, Vol. TII, p. 489), we shall describe statements which are

mletlp this Bense as * vacuously true™ or * vacuons,'®

vacml:spgjiﬂsia to put any or all of the assumptions into a form such that they are
& ordinary real space, For examnple, Professor Moore bas pointed

ont that A1 conld . ..

ordinaty space. be replaced by the following proposition, which is vacuous for
Al, Let A be i : , .

o B, then 4 = & point and B be a point, If there is no line which is on 4 and
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A 2. The pseudo-points shall be the points of a real projective
three-space S, together with one other pseudo-puint 0. The psendo-
lines shall be the lines of S, each pseudo-line, however, containing O.
Thus any two pseudo-points are collinear with 0; a pseudo-plane is
an ordinary plane together with &; a pseudo-space is S, together
with ¢. Hence it is evident that A2 is false and A1, A3, EO, E1,
E?2, E3, E3 are true. There exist harmonic sequences of pseudo-
points, some of which are ordinary harmonic sequences. Ience
Assumption JI is true. By reference to the definition of a quad-
rangular set and harmonic conjugate it is clear (becausc every life)
contains O) that any pseudo-point ¥ is harmonically conjugape’ib 0
with regard to any two pseudo-points which are collinearg with 1.
Hence a linear net of rationality contains all the pseudo-pdints of a
pseudo-line. The operations of addition and multipliéation are not
unigue, however, and hence the definition of order‘deoes not apply ;
there are no open cuts, and Assumptions C @e\{ are vacuously
true. AN\

A3, The psendo-points shall be the’pdiﬂ’ts of a real projective
space S, with the exception of a sir}g}e: “point 0. The pseudo-lines
shall be the lines of S, except that i ease of those lines which pass
through ¢ the pseudo-lines do not*eontain 0. Clearly A 3 is false
whenever the pseudo—poillts"nzi; B, ', D, E are chosen so that the
lines 48 and DE wmeet ¥ @.“tA 1, A2, E0,E1l, E2, E3 E3 are
obviously true. A hapmonic sequence and a net of rationality of
pseudo-points can & found identical with an ordinary harmonic
sequence and nej;«éﬁ ’ratiopality on any line not passing through O.
Hence I3, C, &R are also true.

E0. Thepssudo-points shall be the vertices of a tetrahedron, and
the pseudbflines the six pairs of pseudo-points. Thus the pseudo-
plangs aré the trios of pseudo-points, and a pseudo-space consists of
all foifr pseudo-points. A 1 and A 2 are obviously true. A3 is true
because we may have E=4 and D=258. E1,E2, E3 E 3 are true
H, ¢, R are vacuocusly true.

1. There shall be one pseudo-point and no pseudo-line. Elis
false and all the other assumptions are vacuously true.

E2. There shall be three pseudo-points and one pseudo-line con-
taining all three psendo-points. A1, A 2, E0; F 1 are true. A3, E3,
E 3, H, ¢, R are vecuously true
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E3. The psendo-points and pseude-lines shall be the points and
lines of a real projective plane. A1, A2 A3, EQE1, E2 H,C, R
are trae and E 2 is vacuous.

E 3. The pseudo-points and pseudo-lines shall be the points and
iines of a real four-dimensional projective space, X 3'is fulse and all
the other assumptions are true.

H. The pseudo-points and pseudo-lines shall be the points and
lines of any modular projective three-space (ef. § 72, Vol T, ania§ 16,
below). All the assumptions A and E are true, H is false, m\ul 8 and
R are vacuously true, <\

C. The pseudo-points and pseudo-lines shall be t}1é.\poi11ts and
linear nets of rationality of & three-dimensional net(Of rationality in
an ordinary real projective space. All the assumwf{idns are Lrie except
C, which is false. R is vacuously true, 3

R. The pseudo-points and peeudo-lines\ Shull Le defined as the
points and lines in Theorem 15, the cgi'{r’dhmtes, however, being ele-
ments of the system of ordinary complex numbers. All the assurip-
tions are true except R, which is falbe!

Assumption C, which is moge Eomplicated in its statement than
the others, is, however, such ﬂ‘xaﬁ neither of the two statements into
which it is separated may Ve omitted. This resalt is established 1n
the following theorem,,:<

L 3

Trrorem 18. Agsuimption C (1) is not @ conseguence of Assump-
tion C(2) andﬂc}%& the other assumptions. Assumption C(2) is not a
consequence 9 (1) and of the other assumpitons even if we add {o
G (1) the Jfollowing : If a projectivity transforms 7, into itself and
I, ond( H "into points of R(FH H ), and transforms wn open eul
(A,.ﬁ)\c-nto an open cut ((, D), 1t iransforms the point a-ssoc:i-:tt.ed AWWIEh
(ii,j'ﬂ) into the point associaled witlh (C, Dy

PN
\ s
3

Proof* (1) Any real number determines a class &, of numbers
.of the form ¢z + b where o and 5 are any rationals. X is the same
a8 K, 1, for all rational values of g and & H
irrationals, K, and K,
the class

ence, if 2 and y are two
are either identical or mutysll y exclusive. Thus
of all real numbers fallg into a set of mutnally exclusive

Thi: a-!'gument Ln'a.k(-‘s use of Jpor 1 t oYy IBO5 W old not
* 2} Bt 0Ttlons of tha he ] i o
; witho of class o5 which [N [s

long digression. Hence . 5
the methods and t i ., . i e Wa assume knowledge o
explanation. erminclogy of this branch of mathc.matlcs without further
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classes [K]. With each class K we assoclate a particular one of its
numbers,* %, and thus oblain a set of numbers [%] such that every
real number can be written uniquely in the furm ak + 2.

Now consider the number system wlose clements are the complex
numbers of the form ai 4§, where ¢ and & are rational and i=v_1.
If we take as pseudo-points and psendo-lines the points and lines of
& three-space based (as in the proof of Theorem 15) on this number
gystem, it is elear that all the asswmptions except C are satistied.
If we aleo take as the pseudo-points H, I, I/, those having the
eobrdinates (0, 1, 0, 03, (1, 1, 0, 0), (1, 0, 0, 0}, the net of rationalit:‘,\
R(HoHle) consists of &, and the puints whose co'c')rdim}tqé}\a.ré
{w, 1, 0, 0), where = is rational. Suppose now that we asspejate the
pseudo-point (aé-+ 5, 1, 0, 0) with every cut in this net @Hich in the
ordinary geometry would determine an irrational poing (Eifp\-f- 6,1,0,0).
LEvery point is thus associated with an infinity of\giits, contrary to
Assamption C{1). Moreover, the cuts with whi¢hyany point is asso-
slated occur Letween every two pseudo-pointg diﬁh‘hence between every
two cuts of R{H H H.). Therefore Assgrﬁption C(2) remains true
in this space. .’:”:“

(2) For the secopd half of the¢thtorem the pseudo-points and
psendo-lines shall be the points“aﬁti lincs of a three-space based on a
commutative number system whose elements are the ordinary rational
numbers and all open catg\ih the rational numbers. The laws of
combination shall be aush\%;ab addition ig precisely the same as for
the ordinary numbe’n\'sj'sf;em and multiplication i3 the same between
ralionals and rz.tt@nals or rationals apd drrationals, but dilferent
between irratighdle and irrationals. Thus the product of the nnm-
bers associad®dwith two open euts will not, in general, be the number
associatedWwith the eut given by the usual rule. Hence the pro-
jectinre tansformation #' = az will not preserve order relaticns, and
Ass}m:ption C(2) must be false. On the other hand, C (1) and the
other assumptions are obviously true.

* We do not show how to set np the correspondence. The assumption that this
correspondence exists 15 a weaker form of the assumption used by Zermelo
{(Mathematische Annalen, Vol, LTX, p. 514) in bis proot that any chass can be well
ordored, Our proof of the sscond part of the theorem s dependent on the valldity
of Zermelo's result that the continnum ean be well ordered. The whole theoram
is therefore subject to the doubts that attach to the Zermelo provess because of the
lack of explicit methods of setting np the correspondenees in guestion.
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The existence of the required new number system can be inferred
from Hamels theorem* that there exists a well-ordered set of real
numbers

(5) Gy Gy By "0y By 00

such that every real number can be given uniquely by an expression
of the form

(6) a+aa +eg + - taa, A
containing only & finite number of terms, the a’s all being ragional.

The ordinary rules of combination for cuts determine a multiplication
table for the a's; thaf is, a set of rules of the form A\

(7) a0 == r60+ '81“'k1+ Bnak,+ R 5”‘@\;‘:;,\ ’
where the 8's are rational. The Jaws of combingtibn for the number
system in general may now be stated as follows : Express the two
numbers to be added or multiplied in the farm (6); add or multiply
by the rules for addition and multiplicafion of polynomials, reducing
the result in the case of multiplication by means of the multiplication
table for the «’s. SN

Now suppose we denote by, \\ X

(8) @;3 d;; Tty a’i: e

bhe same set of numbefs {\a] arranged in a different order of the same
type as (5). Such z}n\(\)rder would be obtained, for example, by inter-
changing a, and ‘e and leaving the other a’s unaltered. There is
bherefore & omesbe-one correspondence in which every «, corresponds
to the a] h"a{'\n’hg the same subscript. Moreover, since the set of all a’s
includedbhre same elements as the set of all g

8, every real number
is expressible in the form

~ 9 @+ @ + @i+ + a,u; .
A new law of maltiplication, which we shall denote by %, is now

defined by setting up a multiplication table for the ¢’ according to
the rule that

(10)
whenever
(11)

! P '
o = e r
¢ X ﬂ'} (I0+ a‘laﬁ -+ -+ a:”a{n

aiaj=a0+alat’+ et aa

Uy

* Mathomatische Annalen, Vol, LX, p. 459
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The product, according to the new law of combination, of two real
numbers is obtained by expressing each in the form (9), multiplying
aceording to the rule for polynomials, and reducing by the multipli-
cation table for the a's.

Sinee the set of all expressions of the form

a+ a1m£1+ aﬂai’—}— R
forms a number system, the set of all expressions of the form
a, +rxaf+a:af foen

forms a number system isomorphic with the first. For if we let eackr
a, correspond to the a! with the same subscript, the sum of any &“0'
elements of the first number system corresponds, by dehnu&ou, to
the sum of the corresponding two elements in the secoutl number
system. Similarly for the product of a rational by a rahonal or of
a Tational by an irrational. The product of two irratfoels in the first
system corresponds to the product of two 1rrat1c;m§s in the second,

because the two polynomials in the a's are ma}lmphed by the same
rules as the two in the e'’s, and are also fedticed by corresponding

entries in the respective multiplication tables

We may ipsure that the two numhe:' 53 gtems shall be distinet by
sclecting the a’s, in the first place; 80 that @, =V2 and «, =3, and
then choosing the ”s so that gfe e,

*14, Foundations of the cemplex geometry. Let usadd to Assump-
tions A, ¥, H, C the follo%no assumption :

AssumrTioN R. On Some line, 1, not all points belong fo the sume
chain.

Let 22, B three points of .. The geometric number system
determmed b}a he method of Chap. VI, Vol T, by the scale £, £, £ is
commut’l\tlve for all the points in the chain C(EAE) but not neces-
Salllg‘for other points. However, it is clear, withoul assuniing the
comnidtativity of multiplication, that

ol =g 4a, &= azs, ¥'=we (a=constant)

define projectivitics. For z'= 27’ this follows from § 54, Vol. I; for
o' =2+ @ it reduces to Theorem 2, Chap. VI, Vol I; and for the other
two cases, to Theorem 4, Chap. VI, Vol L.

Let o be any point of I not in C(BEE), and let [X7] be the set of
all points in C(BRR). Then, by Theorem 11 (1), the set of points
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[X+J] is a chain. This chain has no point except £ in common
with C(RRR), because, if X+ J=X'#+ R, it would follow that
X'— X =4, and thus J would be a point of C{EEE). Let us denote
the chain [X + 7] by C\

In order to continue this argument we need the following assump-
tion of closure :

Assvmrrion 1. Through a point P of any chain C of the line I,
and any point J on I but not in C, there s not move than ong ghain
of L which has no other point than P in common with C,

N

(\)

Now let P be any point of I not in C(BERE) or C\. (Sueh” points
exist, because, for example, the chain C(REJ) does n:cm}‘g:dineide with
C{ERE) or C'. The chaiu C(PJE) has, by Assuznption I, a point
different from Z in common with C(EBE). .I“.g\f: X, be this point.
In case X, + E, the projectivity O

(12) x=x+7E-x0x)
transforms £ into , X, into itself, a2 into itself. Hence it trans-
forms C(ERE)= C(RX.E) inj:-q.’ﬁ'(JXII;). Hence every point of
C{JX.E), and in particular Ppds'of the form X + JX", where ¥ and
X" are in [X]. If X,= B, the projectivity

(13) O X'=Jx

S -
transforms C(I—g,' 4, L) into C(RJE), which contains P. Hence, in
this case P ia\'t)f" the form JX. Thus we have

LeMus b SBvery point of the line L 1s expressible in the form A-J8,
where dand B are in C{EER).

I‘Ll'?,ihm 2. Two poinis A+ JB and 4’ + JB, where A, B, A', B are
?@\.C(E.’};};), wre tdentical if and only if A=A' and B—R'.

\J Foril BB, 4+ 78 A'+JB' implies J = (4" — A (B —BYY
and thus J would be in CEER); and if B=2 it implics directly
that 4 = A"

Each of the projectivities X'=JX and X'— x7 transforms the
chain C(BRZ) into C(RJE). Hence, if 4 be any point of C{LRE)

(14) AT=J4',
where 4 is also in C({RER).
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Lach of the projectivities X'=(f — J) X and X' = X(F — J) trans-
forms C{RRL,) into C(H(F—J)E). Ilence, if 4 be any point of
Cirie

( lw)! A(R-—J):(EHJ)A”,
where 4" is also in C(EEL). By the distributive law (Theorem 3,
Chap. VI, Vol. T) it follows that

A AT = A" — A",
By {14), this reduces to
A—Jdl=4"— g4,

By Lemma 2, it follows that 4 =A4"=4". Hence 4J=J4. From\. \

this we can deduce, by the elementary l.ms of operation, . O

(A+ JBYO+ JDY = A(CH TDVFHIB(C+JD) L8
=ACH+ ATD + JBC + TBID \~
= (d 4+ CJB 4+ JDA + JDIBN
= 0(4+ JB)+ ID(A+,8)
=(C+JD)(d+JE), \~

Hence the geometric number systern dets‘lmlmd by any scale on !
is comiutative. Since chains are tlan&férmed into chains by any
projeetive transformation, it follows thatvthe geometric number sys-
tem determined by any scale on anyine in a space satisfying A, F,
H, C R, T satisfics the commutative law of multiplication. Hence,
by Theorem 1,

L ¥
S
N

Turorkm 19, Asmmptw\P 15 satisfied in any space salisfying
Assumptions A, B, H, Q;ER, 1

Sinee every poimbyin the geometric number system is expressible
in the form A -'I\:Z}}, we have

N\
COBIRN Jt= A+ JB,
where Gnd B, are in C{(HRE ). ThusJis cne of the double points
of theﬁ‘m« o]utmn
(16) XX} B(X+X)—4,=0,
which transforms C(LER) into itself. Any two points of C(RELZ)
which are conjngate in this involution may be transformed projec-
tively into 72 and 2 by a transformation which carries C(RRE) into
itsclf. This reduces the involution to

(an XX'= A,
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where 4 must be negative relatively to the scale EEZE, since the
double points are not in C(EAKP). The transformation X =+v— 4Xx

now reduees (17) to XX'=—R

and thus transforms o/ to a point satisfying the equation

Ji=—P.
Hence we have
Turorem 20. The geometric number system in any space sadigfying
Assumptions A, E, 11, C, R, I s womorplde with the complesNiwmber
system of analysis, e with the system of numbers. K 858, where
P=—1 and o and b are veal, «\

*15. Ordered projective spaces. There is an~.1fmﬁcrtant class of
projective spaces which may be referred to q.&fﬂfe ordered profective
spuces and which are characterized by the Assurﬁptions 3 given below,
This class of spaces includes the rationglMehd real projective spaces
and many others, The set of assumgtl‘x&ﬁs, A, E, 8, is not categorical,
but it may be made so by adding o sititable contlunuity assumption or
by some other assumption of clesure.

These assumptions introglgl%ié a new class of undefined elements,
called senses,* in additiodto the points and lines which are the
undefined elements of &ssumptions A and E. The senses are denoted
by symbols of the fgﬁrh‘t S{4BC), where 4, B, C denote points.t

S51. For any t\fl;ee distinet collinear points 4, B, C there is a sense
SUBC). W)

82 }fbr:a?ny three distinct collinear points there is mot more than
one se?&.*‘\iz:}’(ABC).

SIE(ABC)= S(BCA).

M S(ABCY+ S(ACB).
o N US8E If S{4BC)=S(A'B'C"y and S(A'B'Cy=8(A"B" ", then
\J S4BC)= 54" B ™),

S6. If S(4BO)= S(BCO), then S(4BO)= S(4C0).

37. If 04 and OB are distinct lines, and S(044)=8(044) and
044,4,% OBBB,, then S(OBB)= S(OBB,).

* Bats of assumptions more or legs related to these have been given by A. R

Behweitzer, American Journal of Mathematics, Vol, XXXI, p. 865, and A, N. White-

head, The Axioms of Projective Geometry, Cambridge Tracts, Cambridge, 1006.

+ With respect to the intuitional i i =
O i basiz of these assumptions, ¢f. figs, 6-12.
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If S(4BC) be identified with the sense-class which is discussed
below in § 19, Chap. II, it will be seen that S1 and 82 are immedi-
ately verified and 83, - - -, 87 reduce to Thecrems 2-6, Chap. 1L This
shows that the assumpt-mns S are satisfied by a rational or a real
projective space.

These assumptions are capable, as is shown in Chap. IT, of serving
as & hasis for a very complete discussion of geometric order relations,
Assumption P is not a consequence of A, E, 5 alone,

EXERCISES D
£\
1. Prove that Assumption I is a consequence of A, E, and 8. Wy
2. Prove that with a proper definition of the symbol < (less, ﬁhafx} the
geometrie number system in an ordered projective space sa.tmﬁes t}::g following
vonditions : §
(1) If @ and b are distinet numbers, ¢ <b or b<a. O
(2) If @ <d, then « = & AN
B3y Ifa<<band b<q then a<e. ’
(4) If o <'h, there exists 2 number, z, such thaf a.*t.' z and x < &,
(8) If 0 < g, then d<a + & for every &. o\

~

(T 0<gand 0<E then 0 <<a+ b N

{Cf. I&, V. Huntington, Transactions of ,t@ie MAmerican Mathematica] Society,
Vol. VT (1905), p. 17.) N

3, Tntroduce an assamption of {@)ntinuity, and with this assumption and
A, E, 8 prove Assumption P.
4. Prove that P is not a co\sequence of A, E, S alone.

*16. Modular progactwe spaces. We have seen (§ 7) that, in any
space satisfying Agstmptions A and E, any two harmonic sequences
are pm]eetlve\lfence, if one harmonic sequence contains an Infinity
of points, eve'ﬁr such sequence contains an infinity of peints, and
by §8 th;gqe points are in one-to-ome reciprocal correspondence with
the ofdinary rational numbers. On the other hand, if one harmonic
sequence contains a finite number of points, every other harmonic
sequence in the same gpace contains the same finite number of
points. Hence the spaces satisfying Assumptions A and E fall inte
two classes — those salisfying Assumption H and those satisfying
the following:

Assumprion H. If any harmonde sequence exists, at least one con
tains only a finite number of points.
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The spaces satisfying T may be called modular, and those satisfy-
ing B nonmodular.

Tt follows, just as in Theorern &, that the principle of duality is
true for any modular space.

Jet 0 be any parabolic projectivity on a line, and let H, be its
invariant point. 1f H, be any other point of the line, the points

ST, TENE), B, T2, T -

form a harmonic sequence, by definition. If this is to contain anly
a finite number of points, there must be some positive integer™s such
that TI"(JI)=II"(H), wbere m I3 zero or a pOSlthG mtecrer less
than n If % —m =%, we have

T () = T, L0

and hence IT* =1.
o\
Hence all the points of the harmonie sequ@ce are contained in the seb

H, II(H), - Q- Y(H ).

N

In case & is not a prime numl}é}: that is, if there exist two positive
integers, }r ?., different from umty such that & _? ,?cz, let us con-
sider the pﬂrabohc p103ect1v1ty TT*. The points

a, 1{*@» IE4 (L), <o, TSk

satisfy the definition of a harmonic sequence. Sinee any two harmonic
sequences coptaiil the samne number of points, it follows that the given
sequenee GO‘ﬂrd not have contained more than %, points. In case A,
breaks\w into two fuctors, the same argument showq that the given
harmoeic sequence could nob contain a number of points larger than
eﬂslit,r factor. This process can be repeated only a. finite number of

“¥itnes and can stop only when we arrive ab a pritue number. TTence
we have

TrrorEM 21. The vumber of points tn a harmonic sequence {s print.
The points of a harmonie sequence may be denoted by

Hro’ 11 (}IO), YTy II»-! (Ho)’

where 1 is a parabolic projectivity. The period, p, of any parabolic
projeciivity is a prime number,
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With refercnce to a scale in which H == 0, II{#) = 1, and the limit
point of the harmonic sequence is o, II has the equation

d=ax+1
Hence the codrdinates of the points in the harmonic sequence are
0) 1! 2: ...,P..—.l,

respectively, where 2 represents 141, 3 represents 2 41, ete. Since
II* =1, we must have that p=0, p+1=1, np+k=Fk cte. In other
words, the cobrdinates of the points in a harmonic sequence are ele-
ments of the field obtained by reducing the integers modulo p, A\
explained in § 72, Vol I A O

By Theorem 14, Chap. V1, Vol. I, the net of rationality deigecr?i:ﬁ«lned
by the points whose cobrdinates are 0, 1, o consists of E]Qe(point o
and all points whose cobrdinates are obtainable from ) and 1 by
the operations of addition, subtraction, multiplicationy and division
{exeept division by zero). Since all numbers gK’!;hls sort are con-

X

tained in the set AN
0, ]-’ T P_l;. \/

o\

we have o3y

Trronss 22, The number of poinds ¥n o net of rationality in o
moduler space is p+1, p beingag Prime number constant for the
space i guestion. ~\

€ 3
4

Obsiously, if AssumptionQ (§ 10 be added to the set 4, B, T,
the number of pointssgn’any line must be p+1, p being prime.
A space satislying ,:E, 1T shall be called a rational moduler space.
The problem of finding the double points of & projectivity in a rational
modular spacg $one or more dimensions leads to the consideration
of madular? ;é'paces bearing a relation to the rational ones analogous
to the _m\}at\ion which the complex geometry bears to the real geometry.
The eiglence of such spaces follows from the considerations in Chap.
IX, Vol. T (Propositions K, and K,). The geometric number systems
for such spaces may be finite* (Galois fields) or infinite.t

*E. H. Moore, The Suhgroups of the Generalized Finite Modular Group,
Decennial pulﬂimﬁons of The University of Chicago, Vol. IX (1902), pp. 141-160;
L. E. Dickson, Linear Groups, Chap. T.

t L. B, Dickson, Transactions of the American Mathematical Soclety, Vol. VI
(1907). p. 589. See also the article by ¥. Steinitz referred to in §92, Vol. T
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17. Recapitutation, The various groupings of assumptions which
we have coosidered thus far may be resumed as follows: A Space
satisfying Assumptions

AE is a general projective space;
AE P is & proper projective space;
AEH is a nonmodular projective space;
AEH is a modular projective space ;
AE S is an ordered projective space ; N\
AEHQ is a rational modular projective space}
AEH Q is a rational nonmodular proje(::,t{’(é"space;
4 B H, G, R} 1s 4 real projective space; . N

or 4, F K 2 N

AEHCE!?Y

# 4 '\'n
18 a complex projectivé Space,
or A, B, J plex projective sp

The first six sets of assumptions are yiitx\ifnd the remaining ones
are, categorical. The set of theorems dedweible from any one of these
sets of assumptions is called g proie@ﬁiyé geometry, and the various
geometries may be cﬁstinguished‘:hyhthe adjectives applied above to
the corresponding spaces. 4%

3
R
G

N

\'\\.'



CHAPTER II
ELEMENTARY THEOREMS ON ORDER

18. Direct and opposite projectivities on a line. In §9 a point 4
was sald to precede a point B relative to a scale B, K, E. if the codrdi-{
nate of A in this scale was less than the codrdinate of B. f:;uppg@mg
the cobrdinate of 4 to be @ and that of B to be b, the projestivity
changing E to 4 and E to B and leaving E, fixed has the equatwn

{1) 2 ={h—ayz+a “~

In this transformation the coeffic